a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))
b(a(a(x))) → a(c(b(a(b(x)))))
a(b(x)) → b(b(a(x)))
a(c(b(x))) → b(a(c(x)))
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
b(a(a(x))) → a(c(b(a(b(x)))))
a(b(x)) → b(b(a(x)))
a(c(b(x))) → b(a(c(x)))
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))
b(a(a(x))) → a(c(b(a(b(x)))))
a(b(x)) → b(b(a(x)))
a(c(b(x))) → b(a(c(x)))
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
b(a(a(x))) → a(c(b(a(b(x)))))
a(b(x)) → b(b(a(x)))
a(c(b(x))) → b(a(c(x)))
B(a(x1)) → B(b(x1))
B(a(x1)) → A(b(b(x1)))
B(c(a(x1))) → B(x1)
A(a(b(x1))) → A(b(c(a(x1))))
A(a(b(x1))) → A(x1)
A(a(b(x1))) → B(a(b(c(a(x1)))))
B(c(a(x1))) → A(b(x1))
A(a(b(x1))) → B(c(a(x1)))
B(a(x1)) → B(x1)
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
B(a(x1)) → B(b(x1))
B(a(x1)) → A(b(b(x1)))
B(c(a(x1))) → B(x1)
A(a(b(x1))) → A(b(c(a(x1))))
A(a(b(x1))) → A(x1)
A(a(b(x1))) → B(a(b(c(a(x1)))))
B(c(a(x1))) → A(b(x1))
A(a(b(x1))) → B(c(a(x1)))
B(a(x1)) → B(x1)
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))
B(a(x1)) → B(b(x1))
B(c(a(x1))) → B(x1)
A(a(b(x1))) → A(x1)
A(a(b(x1))) → B(c(a(x1)))
B(a(x1)) → B(x1)
POL(A(x1)) = 2 + 2·x1
POL(B(x1)) = x1
POL(a(x1)) = 2 + 2·x1
POL(b(x1)) = x1
POL(c(x1)) = x1
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
B(a(x1)) → A(b(b(x1)))
A(a(b(x1))) → A(b(c(a(x1))))
A(a(b(x1))) → B(a(b(c(a(x1)))))
B(c(a(x1))) → A(b(x1))
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(a(x1)) → A(b(b(x1)))
A(a(b(x1))) → A(b(c(a(x1))))
Used ordering: Polynomial Order [21,25] with Interpretation:
A(a(b(x1))) → B(a(b(c(a(x1)))))
B(c(a(x1))) → A(b(x1))
POL( A(x1) ) = x1 + 1
POL( c(x1) ) = max{0, x1 - 1}
POL( b(x1) ) = x1
POL( B(x1) ) = x1 + 1
POL( a(x1) ) = x1 + 1
b(a(x1)) → a(b(b(x1)))
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(c(a(x1))) → c(a(b(x1)))
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
A(a(b(x1))) → B(a(b(c(a(x1)))))
B(c(a(x1))) → A(b(x1))
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(c(a(x1))) → A(b(x1))
Used ordering: Polynomial Order [21,25] with Interpretation:
A(a(b(x1))) → B(a(b(c(a(x1)))))
POL( A(x1) ) = 0
POL( c(x1) ) = 1
POL( b(x1) ) = x1
POL( B(x1) ) = x1
POL( a(x1) ) = max{0, -1}
b(a(x1)) → a(b(b(x1)))
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(c(a(x1))) → c(a(b(x1)))
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A(a(b(x1))) → B(a(b(c(a(x1)))))
a(a(b(x1))) → b(a(b(c(a(x1)))))
b(a(x1)) → a(b(b(x1)))
b(c(a(x1))) → c(a(b(x1)))